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Abstract

An understanding of the magnetic response of materials as a function of

frequency can provide information regarding the energy and time scales of

different intra-material interactions. A convenient way to measure magnetic

properties at radio frequencies (rf) is to measure frequency shifts in a self-

resonant LC circuit. However, measurements of the rf magnetic properties

of materials may be complicated by a convolution of the intrinsic magnetic

response with a spurious electrical response associated with the normal state

skin depth. Quantifying the effect of the skin depth contribution to the signal

is the first step toward obtaining rf data that may be compared with data at

lower frequencies where this convolution problem does not exist. We present

the initial results of our efforts to disentangle these two contributions. By

quantifying the geometric dependence of our measurement apparatus, we

permit measurements of magnetic susceptibility in absolute units at radio

frequency. This work forms the basis for all further studies of magnetic

properties that make use of the self-resonant LC oscillator technique.

Introduction

The magnetic susceptibility, χ, of a material is related to its intrinsic electro-

magnetic properties. Magnetic susceptibility is a material dependent quan-

tity that describes the magnetic behavior of an object in an applied mag-

netic field, H. The magnetic moments of an object experience an induced

magnetization in response to the external magnetic field [1]. A material’s

magnetization relates to the strength of an applied magnetic field through χ
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as

M = χH (1)

In the above, H is the strength of the magnetic field in amperes per meter and

M is magnetization in the same units. Magnetization varies among materials

and is used to describe the density of magnetic moments which contribute

to χ per unit volume [1]. Magnetic susceptibility is a dimensionless quantity

and may be defined as χ = dM
dH

. The magnetic field within the material is

the induction, B. The induction of a sample is the sum of the external field

strength, H, and the magnetic field experienced due to the magnetization of

moments within the sample [1].

B = H + 4πM (2)

The sign of χ determines how the magnetic moments respond to an applied

magnetic field [2]. In paramagnetic materials, χ > 0, and the induced mag-

netization of the magnetic moments is in the same direction as H, strength-

ening the field within the material. In diamagnetic materials, χ < 0, and the

moments’ magnetization opposes the magnetic field to weaken it in the ma-

terial. All materials show some diamagnetic character due to a contribution

from paired core electrons. However, this contribution is dominated by the

paramagnetic component of χ in paramagnetic materials.

The electromagnetic properties of a material may be examined in an un-

conventional manner by use of a self-resonant LC oscillator. In an LC circuit,

a capacitor (C) is coupled with an inductor (L). The capacitor is composed

of two electrical conductors separated by an insulating, or dielectric, material

[2]. When two conductors are isolated from one another, there will exist an
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electric potential difference, V , between them. If the charge on one conduc-

tor is +q and the charge on the other is −q, then a constant ratio q
V

will

exist. This ratio is the capacitance, C.

C =
q

V
(3)

This is only true for the +q,−q charge configuration. A simple capacitor

example is two parallel plates which store a charge q and are separated by

air. For this case, capacitance may be defined based on geometry alone.

C =
ε0A

d
(4)

The plate area is A, the separation distance between plates is d, and ε0 is

the electric permittivity of free space ε0 = 8.85× 10−12 Fm−1.

If a capacitor has a potential difference, V , between its plates, an amount

of work will be required to move charge dq > 0 to the negative plate from

the positive plate.

dU = V dq (5)

This work is stored by the capacitor. The total energy stored by charging a

capacitor with charge q is

∫ U

0

dU =

∫ q

0

V dq

=

∫ q

0

q

C
dq

UC =
q2

2C

(6)

The potential difference between the plates implies an electric field, and

energy is stored within this electric field [2]. The capacitor’s potential energy
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reaches a maximum when the amount of charge stored is maximized. Once

maximum charge is achieved, the capacitor discharges.

As the capacitor discharges in an LC circuit, charge flows through the

inductor. An inductor is a coil of wire that induces a magnetic field when

current, i = dq
dt

, passes through it. The magnetic field, B, created by the

current has a magnetic flux ΦB related to the area A of the coil given by

ΦB =

∫
~B · d ~A (7)

This expression is true for one turn of the coil [2]. Since each turn has a flux,

the total flux is

ΦB, total =
∑
N

∫
~B · d ~A (8)

where N indexes the turns. As current in the inductor changes, so does the

magnetic field. This varying magnetic field causes a change in ΦB. By Fara-

day’s Law of Induction, a potential difference is produced with the changing

magnetic flux in the coil. This voltage V may be related to a change in flux

by

V = −dΦB

dt

= −dΦB

di

di

dt

(9)

We now establish a definition for the inductance, L.

L =
dΦB

di
(10)

From Eq. 10 we observe that a potential exists as the current changes with

time in an inductor [2]. The inductance resists a change in current by chang-

ing the voltage to maintain constant current. The voltage in the inductor is
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associated with magnetic field energy. The energy of the inductor’s magnetic

field is given by

dU = V dq

=

(
−Ldi

dt

)
(idt)∫ U

0

dU = −
∫ i

0

Lidi

U = −1

2
Li2

UL =
1

2
Li2

(11)

Again the energy of the system depends on the electric potential integrated

with respect to the charge. The magnetic field energy is maximized when

current is maximized in the inductor. This maximum occurs when no charge

is stored on the capacitor. At this point all of the electric energy has trans-

ferred to magnetic field energy and the potential of the capacitor VC = 0.

Charge flows out of the inductor and the potential VL changes to maintain

a constant current through the inductor as stated earlier. The inductance

recharges the capacitor to −VC where charge is stored on the opposite ca-

pacitor plate from where it started. The process continues in the opposite

direction. According to the right hand convention, when the direction of

the current changes, the direction of the magnetic field within the inductor

changes as well. This changing direction creates an alternating magnetic field

in the inductor.

Energy alternates between electric and magnetic forms in an LC circuit.

The capacitor stores energy within an electrostatic field, whereas the inductor

stores energy within an induced magnetic field. The total energy, UT, at any

time within the LC circuit is the sum of the electric field potential energy
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and the magnetic field kinetic energy shown by

UT = UC + UL =
1

2

q2

C
+

1

2
Li2 (12)

The shifting between electric and magnetic field energy causes oscillations

within the LC circuit [2].

We may draw an analogy to a mechanical oscillator where the total energy,

UT, is the sum of the potential and kinetic energies [2].

UT =
1

2
kx2 +

1

2
mv2 (13)

In Eq. 13, k is a force constant, x is the displacement from equilibrium, m

is the mass of the object, and v is the velocity of the object. The first term

is the potential energy due to a restoring force, and the second term is the

kinetic energy. When compared to Eq. 12, we notice that both total energy

equations are a first order differential equation. The LC oscillator energy

depends on q and the mechanical oscillator depends on x. The kinetic energy

term for both equations involves the first derivative of these variables. For

the LC oscillator, the current is i = dq
dt

and for the mechanical oscillator, the

velocity is v = dx
dt

. Hence, we see a close resemblance between the energy of

an LC oscillator and a classical mechanical oscillator.

The oscillations occur at a particular frequency [2]. For a mechanical

oscillator, the frequency of oscillation is

f =
1

2π

√
k

m
(14)
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Similarly, the LC oscillator operates at a resonant frequency given by

f =
1

2π

√
1

LC
(15)

The frequency may be adjusted by changing either the inductance or the

capacitance of the circuit. As an example of the range we work within,

f ≈ 5.0 MHz for C = 100 pF and L = 10 µH.

With a sample present in the inductor, the magnetic field within the

region of space containing the sample is altered and the inductance of the

apparatus changes accordingly. Consider a small change in L → L + ∆L.

This will cause a change in f → f + ∆f . Eq. 15 implies

2π(f + ∆f) = ((L+ ∆L)C)−
1
2

=

(
LC

(
1 +

∆L

L

))− 1
2

= (LC)−
1
2

(
1 +

∆L

L

)− 1
2

(16)

If ∆L
L
<< 1 then a binomial expansion gives

2π(f + ∆f) ≈ (LC)−
1
2

(
1− 1

2

∆L

L

)
(17)

In this limit, we obtain a relationship between frequency shift and inductance

change.

2πf + 2π∆f = (LC)−
1
2 − (LC)−

1
2

1

2

∆L

L

∆f = −

(
1

2π(LC)
1
2

)
1

2

∆L

L

= −f 1

2

∆L

L
∆f

f
= −1

2

∆L

L

(18)
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The last of Eqs. 18 describes the resonant frequency shift, ∆f , caused by

inserting a metal sample into the inductor of an LC circuit [3]. In this

experiment, metallic conductive samples were introduced into the inductor

of the circuit causing a change in inductance ∆L. The base frequency is the

resonant frequency of the empty coil.

From Eq. 2, we notice that the magnetic field within the metal sample is

B = H(1 + 4πχ) (19)

The magnetic susceptibility of the material alters the magnetic field within

the inductor and causes a change in the coil inductance. It has been shown

that χ is proportional to the inductance change (χ ∝ ∆L
L

) [4]. The frequency

shift for a particular apparatus geometry relates to χ by

−4πχ = G
∆f

f
(20)

For diamagnetic samples, ∆f > 0 and vice versa for paramagnetic materials.

G is a coefficient that quantifies the relationship between χ and ∆f and is

based on geometrical aspects of the measurement apparatus. The geometric

constant accounts for factors such as sample shape, effective sample radius,

effective coil radius, and effective coil volume. For this work, it is important

to note thatG is assumed to be solely dependent on sample and coil geometry.

At low frequency, magnetic susceptibility has been measured in real units.

This is relatively simple because at low frequency, susceptibility is dominated

by only the effect of magnetic moments within the sample. However, at higher

frequency, the material’s electrical resistivity also contributes to χ. Electrical

resistivity, ρ, is an intensive quantity that measures how strongly a material
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resists an electric current [2]. Macroscopic resistance, R, is related to ρ and

sample dimensions by

R =
ρl

A
(21)

where R is the resistance across the sample, l is the sample length parallel

to current, and A is the cross-sectional area of the sample transverse to the

current. Conventionally, resistivity is measured by a four-contact test. A

current i is sent through a material with two wires and the voltage drop V

across the sample is measured with another two wires. By utilizing Ohm’s

Law (V = iR) and Eq. 21 one can determine the resistivity of a material by

measuring resistance for a sample of known dimensions.

Resistivity gives rise to a diamagnetic-like response that screens a time

varying magnetic field from the interior of the material. This diamagnetic

effect follows Lenz’s Law, which states that induced eddy currents will form

when a changing magnetic field interacts with a conducting material [2].

The electrons near the surface of the sample circulate in response to the

varying magnetic field. Lenz’s Law states that these currents will produce a

magnetic field to oppose the change in the external magnetic field. This skin

effect causes the magnetic field to penetrate only a finite distance into the

sample [5]. In a normal conductor this penetration depth is known as the

skin depth, δ. The skin depth is related to ρ and f by

δ =

√
ρ

πµf
(22)

in Eq. 22, µ is the magnetic permeability. µ is described by

µ = µ0µr (23)
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where µ0 is the magnetic permeability of free space (µ0 = 4π× 10−7 H×m-1)

and µr is the relative permeability of the material [1]. For our samples µr = 1

so µ = µ0.

The skin effect influences the magnetic field within the coil and causes

a change in inductance. From Eq. 22 it is apparent why the contribution

from ρ only plays a role in susceptibility at higher frequency. In materials

where δ is very large, the screening may be very weak. Conversely, when δ is

small, the magnetic field no longer fully penetrates the material and the skin

effect contributes to χ. The rf band is relatively unexplored for magnetic

susceptibility studies due to the convolution of resistivity and a material’s

magnetic character.

Several universities and national labs are using a self-resonant LC oscilla-

tor technique to study χ through an observed frequency shift. Measurements

of χ can be used to study magnetic phase transitions, long-range magnetic

order, and superconductivity. Professor Agosta at Clark University uses this

technique to study organic superconductors [6]. Dr. R. Gianetta at Univer-

sity of Illinois Urbana-Champaign has studied copper oxide superconductors

[7] and iron compound superconductors are studied by R. Prozorov at Iowa

State University with a self-resonant oscillator [8]. Many of these studies

use a tunnel diode oscillator (TDO) or a CMOS oscillator circuit to measure

frequency shift. The Lacerda group at the National High Magnetic Field lab

in Los Alamos, New Mexico uses a TDO technique to make rf measurements

[9]. The TDO has been established for quite some time. For example, in

1975, measured frequency shifts for a powdered sample of anhydrous NiCl2

were related to inverse susceptibility to show that the sample exhibited Curie-

Weiss behavior [10]. Field induced phase transitions have also been studied
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by varying the strength of the external magnetic field. Pulsed magnetic field

measurements have been made using this technique for certain organic com-

pounds and conducting samples such as Sr3Ru2O7 [11]. In these studies, χ

is given in arbitrary units that relate χ to ∆f through G.

This technique is commonly combined with a low-temperature cryostat

to study magnetic phenomena at low temperatures. Many magnetic effects,

such as phase transitions and hysteresis, are more significant at low tem-

perature. As an example, this technique has been used to study the fer-

rimagnetic to paramagnetic phase transition in TmCo2 occurring at about

4 K [12]. Many other experiments have studied the effect of temperature,

magnetic field, and frequency noise for this technique with these types of LC

oscillators [3][13]. Therefore, this technique can be an accurate method for

detecting magnetic phenomenon in many different samples.

This oscillator technique has a high geometric dependence. In a study

done by the Lacerda group, frequency shift of uranium nickel metal com-

pounds are measured and used to calculate the material’s resistivity [9]. Fig.

Figure 1: UNiGe plot of ρ vs. magnetic field B at 4 K from Lacerda et
al. [9] showing measured ρ values from a four-probe test (open circles) and
calculated ρ data from frequency shift (solid line).
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1 shows a plot from this study displaying measured resistivity data and calcu-

lated resistivity data from frequency shift measurements. Open circles show

measured data for resistivity and the solid line shows calculated resistivity

data from measured frequency shifts. Clearly, the measured ρ data disagrees

with the data calculated from experimental frequency shifts. These disagree-

ments are attributed to geometrical factors [9] although this neglects the pos-

sibility of magnetic effects. Therefore, in order to determine χ in absolute

units at radio frequency, for a particular apparatus G must be quantified.

Resistivity’s contribution to χ derives from the skin effect for different

materials. Prozorov et al. [14] have shown for superconductors shaped into

rectangular slabs that χ relates to δ by

−4πχ =
1

1−N

[
1− λ

R
tanh

(
R

λ

)]
(24)

where N is the demagnetization factor, λ is the London penetration depth,

and R is a characteristic length. A similar relationship has been established

for normal conducting metals [15].

−4πχ =
1

1−N

[
1− µδ

2R
tanh

(
2R

δ

)]
(25)

where R is a characteristic dimension based on sample geometry, µ is mag-

netic permeability, and δ is the skin depth. Skin depth for conductors has

a similar role in its relationship to χ as λ does for superconductors. For

the samples we are using, we assume N = 0, and for a particular sample

shape and size in a given coil, G and R are constants. Hence, through their
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relationships to χ we can relate G to δ and R by

G
∆f

f0

=

[
1− µδ

2R
tanh

(
2R

δ

)]
(26)

The resonant frequency of the circuit with an empty coil is f0. The skin

depth contribution to χ is measurable when δ is very small compared R. In

the δ << 2R limit, the hyperbolic tangent saturates to one. It follows that

G
∆f

f0

= 1− µδ

2R

= 1− 1

2R

√
µρ

πf0

1

2R

√
µρ

πf0

= 1−G∆f

f0

√
µρ = 2R

√
πf0 − 2RG

√
π

∆f√
f0

√
µρ = a

√
f0 − b

∆f√
f0

(27)

where a = 2R
√
π and b = 2RG

√
π. This implies

b

a
= G (28)

Inserting a metallic sample induces a change in the resonant frequency pro-

vided ∆f << f0. At a given base frequency, resistivity may be connected to

a frequency shift from the sample’s presence in the inductor. This provides

a noncontact way of determining resistivity based only on the inductance

change associated with inserting the sample into the coil. Upon rearrange-

ment, the last of Eqs. 27 becomes

∆f√
f0

=
a

b

√
f0 −

√
ρ

b
(29)
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If ∆f for a given sample and coil is measured at several f0, a plot of ∆f√
f0

versus
√
f0 is expected to be linear with slope a

b
= 1

G
and y-intercept −1

b

√
ρ.

This provides a method for determining G for a particular sample shape and

coil. In the experiment outlined in this thesis, G is determined as a first

step in obtaining χ in absolute units at high frequency. Here we demonstrate

how to determine the geometric dependence of a particular experimental

apparatus. We will be working within the rf band (f ≈ 6 − 17 MHz) to

quantify resistivity’s contribution to several metals’ magnetic susceptibilities.

Experimental

A Colpitts LC oscillator is used to measure the frequency shift associated

with the presence of a metal sample in the inductor. Fig. 2 shows the

diagram for our measurement circuit with circuit component values included.

Sample and apparatus geometry relate susceptibility to an observed change

Figure 2: Colpitts oscillator circuit diagram showing arrangement of circuit
components, component values, transistor label, and LC oscillator outlined
by the dashed line.

in resonant frequency. The inductor coil is shown in Fig. 3. The coil is made

of copper wire (38 AWG) wound around a nonmagnetic plastic straw and

has N ≈ 27 turns, a radius of r ≈ 3.5 mm, and a length of ` ≈ 1.6 cm. This
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same coil was used for all frequency shift measurements.

Figure 3: Inductor coil used in LC oscillator.

Frequency shifts were measured at five different base frequencies. Res-

onant frequencies were adjusted by changing the capacitors on the circuit.

Table 1 shows the nominal capacitances for each run and their associated

base frequencies. Base frequencies were measured for the empty coil each

Capacitance (pF) 235 82.5 50 32 23.5
f0 (MHz) 6.32856 10.4070 12.5372 15.2788 16.5932

Table 1: Capacitance values and associated resonant frequencies.

time before and after the samples were inserted.

The sample holder used for mounting samples in the inductor is depicted

in Fig. 4. The sample holder was made of a sapphire rod connected to a

Figure 4: Empty sample holder with pencil for scale and sample holder with
Cu sample mounted.



Weller, 16

copper block and ceramic rod. It was constructed using nonmagnetic ma-

terials so as to not affect the magnetic field within the inductor. Samples

were mounted to the tip of the sample holder with high vacuum grease. The

sample holder extended just short of the center of the coil so that the sample

was as near the center of the coil as possible when present in the apparatus.

This point in the coil stayed fixed for each sample. Therefore, each sample

was at the same location in the coil for every data run.

Metallic samples with nonmagnetic signature were used to study the re-

sistivity’s contribution to susceptibility. Samples of copper (Cu), aluminum

(Al), zinc (Zn), tin (Sn), and lead (Pb) of purity 99.9-99.989 % were shaped

into rectangular solids. Impurities could potentially contribute to magnetic

signatures of metal samples, but for our samples this effect is negligible. The

samples were shaped using 600 and 800 grit sandpaper to polish them to a

size of about 1.5 mm on each edge. For instance, our Cu sample had dimen-

sions of 1.409mm3 × 1.469mm3 × 1.490mm3. In Fig. 5, photographs of the

samples are shown next to a millimeter scale.

Figure 5: Random sample faces of Cu, Al, Zn, Sn, and Pb.

For the first set of runs, the samples were randomly placed on the sam-

ple holder without regard to their orientation with respect to the coil axis.

Frequency shifts for these nonoriented samples were measured at each base

frequency. Care was not given to how samples were placed on the holder in

order to determine the effect of sample orientation on results. A second set

of data runs was performed. This time the orientation of each sample was
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maintained for all base frequencies. The sides of the designated upward faces

were marked with a pencil and oriented in the same direction perpendicular

to the coil axis for every run. Fig. 6 shows the same samples side by side

with the marked faces shown. Assuming that the coil is perfectly cylindrical,

Figure 6: Samples of Cu, Al, Zn, Sn, and Pb showing faces oriented perpen-
dicular to coil axis for second set of data runs.

it should not make a difference which direction each side face is directed.

This ensured that the orientation of each sample was constant for all data

runs. Length measurements of the faces perpendicular to the coil axis are

also shown in Fig. 6. All measurements were conducted at room temperature

and resistivity values for each material were taken from literature [5].

Data & Analysis

We may estimate the self-inductance of our coil by starting with Eq. 15 and

obtaining an equation in the form of a line which relates 1
C

at several values

to 4π2f 2 by

1

C
= 4π2f 2L (30)

By plotting 1
C

as a function of 4π2f 2, we obtain a line with a slope of L

shown in Fig. 7. This slope displays a value of L = 4 µH for the inductance

of our coil. This can be compared to a formula for L in an infinite solenoid
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Figure 7: Plot showing data points and linear best fit for 1
C

vs. 4π2f 2 with
slope L = 4 µH.

with a uniform magnetic field [2].

L =
µ0πr

2N2

`
(31)

In the above, r is the coil radius, N is the number of turns in the coil, and `

is the coil length. We find that for our particular coil

L =
(4π × 10−7Hm−1)(π(0.0035m)2)272

0.016m

L = 2.20× 10−6H

(32)

Although there is a significant difference (≈ 45%) between our calculated and

experimental inductance, our coil is behaving on the order of magnitude that

we would expect for its size when compared to theoretical values. By using

the same coil and sample holder for each run, the geometric dependence of

our apparatus is limited to only the geometry of our samples.

Frequency shift data was collected for randomly oriented samples first at

the five base frequencies. This data is plotted in Fig. 8. Regression values



Weller, 19

Figure 8: Five plots of ∆f/
√
f0 vs.

√
f0 for randomly oriented samples with

lines serving as guides to the eye.

for the linear fits of these data range from R2 = 0.93 to R2 = 0.96. The data

closely follows a linear trend and supports the model for frequency shifts at

different base frequencies from Eq. 29. Smooth lines were added as guides

to the eye to illustrate inconsistencies of measured frequency shifts. For ex-

ample, Pb very closely follows the predicted linear trend, but Sn follows a

more random curved path. These findings can be explained by inspection

of the nonuniformly oriented samples in Fig. 5. Pb has a square face with

perpendicular adjacent faces extending directly downward. Sn clearly has a

parallelogram for a face and the top is offset from the bottom. This irregu-

larity in shape leads to a different dependence of ∆f due to the orientation

of our Sn sample when in the inductor. The orientation effect manifests in

the data by the “hook” at higher frequencies in Fig. 8.

In an attempt to eliminate the nonlinearity, a second set of data runs was
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performed. This time frequency shift data was taken for each sample oriented

in the same direction in the inductor. Frequency shifts for oriented samples

at each base frequency are shown in Table 5 located in the Appendix Section

at the end of the report. The data from Table 5 is plotted on a common

set of axes ∆f/
√
f0 vs.

√
f0 in Fig. 9. Regression analysis shows that all

Figure 9: Five linear trends for ∆f/
√
f0 vs.

√
f0 with consistently oriented

samples.

of the plots strongly support a linear model (R2 = 0.98 to R2 = 0.99). This

data suggests that sample orientation can significantly affect the inductance

change when using this technique.

Resistivity values were not calculated for this data. Literature values of ρ

for the five metal samples at 295 K are shown in Table 2 [5]. The linear fits for

Sample Cu Al Zn Sn Pb
Resistivity (µΩ cm) 1.71 2.69 6.01 11.74 20.76

Table 2: Resistivity values for five metals at 295 K.

each sample in Fig. 9 are ordered from top to bottom by increasing resistivity
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as we would expect. This is noticeable in the y-intercepts of Fig. 9. Pb has

the highest resistivity by far and has the lowest intercept, whereas Cu has

the lowest resistivity and the highest intercept. These findings are supportive

of this technique as a method for determining a material’s resistivity.

Nevertheless, there could be several factors contributing to error in ρ

when considering the y-intercept of these plots. Below f < 6 MHz in the rf

band, our signal becomes too unstable for accurate measurement. We expect

that all y-intercepts would be negative due to positive resistivity and b val-

ues. Stray capacitances play a larger role in signal noise at lower frequencies.

However, Cu and Al have positive y-intercepts implying a negative value for

ρ or b. These disagreements can be explained by the flatness of the slope in

our data. If the slope varies by a small amount, the y-intercept can be dra-

matically altered. This means that any small change in measured frequency

can have a large effect on the y-intercept. Due to our frequency noise the

lowest base frequency is significantly far from the y-axis, and data closer to

the intercept becomes difficult to accurately measure. With a more stable

oscillator, data at lower frequency could accurately be obtained, allowing for

an accurate determination of ρ.

Each of the data series clearly shows a linear trend allowing determination

of G. Geometric coefficient values determined by fits from Eq. 29 are given

for our five samples in Table 3. The variation in G is quite small if we neglect

Sample Cu Al Zn Sn Pb
G value 360.4 353.1 365.6 365.7 498.4

Table 3: G values for samples shown in Fig. 6.

Pb. There is about 3 % difference between these samples indicating that G
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is reasonably robust. However, the geometric coefficient is quite different for

the Pb sample. This is likely to be attributed to different sample size. From

Fig. 5, one can visibly observe a lack of shape and size regularity between

samples. As shown in Fig. 6, our sample edges range from roughly 1.3

mm to 1.5 mm. Volumes for each sample were calculated and are shown in

Table 4. The Cu sample is quite large and the Pb sample is comparatively

Sample Cu Al Zn Sn Pb
Volume (mm3) 3.085 2.989 2.997 2.726 2.312

Table 4: Volumes for five metal samples.

small. A difference in 0.2 mm can lead to a severe difference in sample

volume when operating at this size level. In comparing the Cu and Pb

samples, the sample volume differs by approximately 25 % which can have

a significant effect on the inductance change. These volume differences play

a significant role in the outcome of ∆f . However, the Sn sample has a

volume that differs by approximately 10 % from Zn, yet its G value is the

same (G ≈ 366). The difference in shape between the Zn and Sn samples

Figure 10: Two six panel figures of Zn (top) and Sn (bottom) illustrating
difference in sample shape.

is apparent upon inspection of Fig. 10. Not only does the sample size
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contribute to G but also the sample shape can have a significant effect by

changing the angle at which the sample interacts with the magnetic field. It

seems that the difference in shape offsets the volume discrepancy in G for

our Sn sample. The samples’ orientation with respect to the coil axis greatly

influences observed frequency shifts. This different shape between samples

is most visibly noticeable in the Sn, Cu, and Pb samples. The Sn sample

is a rhomboid, Cu is a large rectangular prism, and Pb is a small cube. In

addition, at such a small size, samples become difficult to handle. Dents

and bevels can occur simply through handling samples with tweezers and

may contribute to sample deformities. This data suggests an extremely low

tolerance for variation in sample size and geometry when using this technique

to determine ρ.

Conclusion

An LC oscillator may be used as a contactless measurement device for de-

termining the material properties of a sample. In particular, this experiment

placed normal metallic conductive samples into the coil of the oscillator. The

sample’s resistivity contributes to χ at radio frequency and affects the fre-

quency shift associated with the metal sample’s presence. This experiment

quantifies G to extend the foundation of this technique for studies regarding

the electrical and magnetic properties of materials. By quantifying G, sus-

ceptibility values may be determined in absolute units at higher frequencies.

This work allows further experiments to be done regarding electromagnetic

phenomena occurring in the rf band.

To extend this experiment, samples that exhibit magnetic signatures may

be studied at higher frequency. By quantifying the resistivity’s contribution
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to χ, the contribution from the magnetic moments within the sample can be

analyzed. Additionally, this technique may be extended to study insulating

samples where ρ is very large. This increased ρ causes δ to also increase. For

these samples, the resistivity does not contribute to χ, but χ is still related

to a frequency shift for a particular apparatus as in Eq. 20. The observed

frequency change quantifies χ for insulating samples at radio frequency with

this technique. These results may be compared to those obtained at lower

frequencies.

LC oscillator measurements are being performed by several laboratories

around the world, yet none of these large laboratories have quantified G for

their apparatus. They simply study χ in arbitrary units of ∆f or f . Although

these units allow qualitative detection of magnetic phenomena, obtaining

susceptibility in absolute units lets researchers compare results from material

studies between different labs. This is an important step in developing the

self-resonant oscillator technique as a robust and useful method for material

property measurement. Our determination of the geometric dependence of

this type of apparatus validates the experiments going on in these laboratories

and provides a framework for further study using this technique.
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Appendix

Sample f0 (MHz)
√
f0 (
√

MHz) ∆f (MHz)

Cu

6.32858 2.516 0.0192
10.4070 3.226 0.0311
12.5373 3.541 0.0378
15.2788 3.909 0.0446
16.5932 4.073 0.0489

Al

6.32858 2.516 0.0189
10.4070 3.226 0.0306
12.5373 3.541 0.0379
15.2788 3.909 0.0438
16.5932 4.073 0.0490

Zn

6.32858 2.516 0.0164
10.4070 3.226 0.0266
12.5373 3.541 0.0337
15.2788 3.909 0.0397
16.5932 4.073 0.0440

Sn

6.32858 2.516 0.0158
10.4070 3.226 0.0261
12.5373 3.541 0.0330
15.2788 3.909 0.0385
16.5932 4.073 0.0433

Pb

6.32858 2.516 0.0118
10.4070 3.226 0.0192
12.5373 3.541 0.0250
15.2788 3.909 0.0288
16.5932 4.073 0.0324

Table 5: Frequency shift values for samples at five different base frequencies.
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